![]() |
Python and Machine Learning for Complete Beginners - Druckversion +- Forum Rockoldies (https://rockoldies.net/forum) +-- Forum: Fotobearbeitung - Photoshop (https://rockoldies.net/forum/forumdisplay.php?fid=16) +--- Forum: E-Learning, Tutorials (https://rockoldies.net/forum/forumdisplay.php?fid=18) +--- Thema: Python and Machine Learning for Complete Beginners (/showthread.php?tid=81587) |
Python and Machine Learning for Complete Beginners - Panter - 08.03.2024 ![]() Python And Machine Learning For Complete Beginners Published 3/2023 MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz Language: English | Size: 28.61 GB | Duration: 43h 31m Become Part of the Artificial Intelligence Revolution What you'll learn Learn how to program in Python Discover machine learning Use artificial intelligence in your programs Learn how to analyse data and make predictions Requirements Only basic computer knowledge needed Basic algebra knowledge useful, but not required Description This course teaches you computer programming in Python from scratch, and also the basics of machine learning in Python.With this course you can become part of the Artificial Intelligence revolution.You'll learn:How to write programs in PythonThe basics of desktop programming in PythonObject-oriented programming and functional programming techniquesHow to use machine learning techniques in your codeThe basics of visualising and analysing dataNumpy, Pandas, Matplotlib, scikit-learn, Keras and morePowerful prediction and classification techniques "naive Bayes" and decision trees.How to use ML techniques to make predictions about data series, spot clusters in data, automatically classify data samples and recognise handwritten digits.Whether you're a complete beginner with coding or already know some Python or another language, this course can help give you modern computer skills to the point where you could apply for Python jobs, where available.Python is one of the most popular programming languages today and is especially popular because of its support for machine learning and artificial intelligence.This courses takes you all the way from writing your first "hello world" Python program to being able to write complex programs incorporating artificial intelligence techniques in which your software can automatically learn how to complete tasks.I'll type all code right in front of you and explain how it works, breaking down programming and mathematical concepts into simple steps, and with suggested exercises throughout. Overview Section 1: Getting Started Lecture 1 Introduction Lecture 2 How to Use This Course Lecture 3 Installing Python Lecture 4 Installing Powershell Lecture 5 Python Virtual Environments Lecture 6 Visual Studio Code: A Free Lightweight Editor Lecture 7 Hello World Lecture 8 The Shebang or Hashbang Lecture 9 Where to Find the Source Code Lecture 10 Visual Studio Code Tips Lecture 11 Variables Lecture 12 An Interactive Program Lecture 13 Builtin Functions Lecture 14 Numeric Variables Lecture 15 Numeric Expressions Lecture 16 Python Types Lecture 17 Performing Calculations Lecture 18 Converting Temperatures Section 2: Loops and Conditions Lecture 19 A Program Inspired by "WarGames" Lecture 20 Boolean Variables Lecture 21 The "If" Statement Lecture 22 If Else Lecture 23 Constants Lecture 24 If-Else-If Lecture 25 Comparison Operators Lecture 26 Fridge Exercise Lecture 27 Solving the Fridge Exercise Lecture 28 Improving the Fridge Solution Lecture 29 "For" Loops Lecture 30 Ranges Lecture 31 Indentation Lecture 32 The "Break" Keyword Lecture 33 The "Continue" Keyword Lecture 34 A Password Exercise Lecture 35 A Solution to the Password Exercise Lecture 36 Boolean Operators Lecture 37 Boolean Operators Exercise Lecture 38 A Solution to the Boolean Operators Exercise Lecture 39 Another Solutiion to the Boolean Operators Exercise Lecture 40 "While" Loops Section 3: Structure Code with Functions Lecture 41 Your First Function Lecture 42 Multiple Functions Lecture 43 Function Arguments Lecture 44 The "id" Function Lecture 45 Changing Parameter Variables Lecture 46 Return Values Lecture 47 Passing Multiple Arguments Lecture 48 Calculating Factorials Exercise Lecture 49 A Solution to the Factorial Exercise Lecture 50 Default Arguments Lecture 51 Keyword Arguments Lecture 52 Variable Length Arguments Lecture 53 Variable Length Keyword Arguments Lecture 54 Arguments and Parameters Summary Lecture 55 A Solution to the Arguments Exercise Lecture 56 Multiple Return Values Lecture 57 A Solution to the BMI Exercise Section 4: Containers: Lists, Tuples, Sets and Dictionaries Lecture 58 Tuples Lecture 59 Packing and Unpacking Tuples Lecture 60 Tuple Slicing Lecture 61 Tuple Functions and Operators Lecture 62 Lists Lecture 63 Joining Lists Lecture 64 Modifying Lists Lecture 65 Extended Slicing Lecture 66 Extending and Inserting Into Lists Lecture 67 Removing List Items Lecture 68 List Comprehensions: Flexibly Creating Lists Lecture 69 List Comprehension Conditions Lecture 70 List Comprehension "if-else" Lecture 71 List Database Exercise Lecture 72 List Exercise Tips Lecture 73 Structuring a Solution to the List Exercise Lecture 74 Completing the List Exercise Solution Lecture 75 About Data Validation Lecture 76 Sets: Collections of Unique Objects Lecture 77 Adding to Sets and Updating Sets Lecture 78 Removing Items from Sets Lecture 79 The Union and Intersection of Sets Lecture 80 Difference Updates Lecture 81 A Set Exercise Lecture 82 A Solution to the Set Exercise Lecture 83 Python Dictionaries Lecture 84 Adding Items to Dictionaries Lecture 85 Iterating Over Dictionaries Lecture 86 Dictionary Views Lecture 87 Deleting Dictionary Items Lecture 88 The Dictionary "Get" Method Lecture 89 Default Dictionaries Lecture 90 Dictionary Comprehensions Lecture 91 A Dictionary Exercise Lecture 92 A Solution to the Dictionary Exercise Lecture 93 Casefolding and "None" Lecture 94 Enumerating and Zipping Lecture 95 Improving the Dictionary Exercise Solution Lecture 96 Hashing Algorithms Lecture 97 Containers Summary Lecture 98 Time Complexity and Big O Lecture 99 Lists of Lists Lecture 100 Iterating Over Lists of Lists Lecture 101 Dictionaries of Lists Lecture 102 A Dictionaries of Sets Exercise Lecture 103 The First Part of A Solution to the Dictionaries of Sets Exercise Lecture 104 The Second Part of the Solution to the Dictionaries of Sets Exercise Lecture 105 Global Variables Lecture 106 Selecting Items at Random Lecture 107 Modular Arithmetic and the Modulus Operator Lecture 108 An Exercise Using Multiple Containers Lecture 109 The First Part of a Solution to the Containers Exercise Lecture 110 The Second Part of the Solution to the Containers Exercise Section 5: Formatting Strings Lecture 111 A Review of Strings Lecture 112 Formatting Strings Lecture 113 The Format Method Lecture 114 F-Strings Lecture 115 Raw Strings Section 6: Regular Expressions Lecture 116 A Simple Regular Expression Lecture 117 Matching Multiple Characters Lecture 118 The Ternary Operator Lecture 119 Greedy Matching Lecture 120 Matching Numbers and Words Lecture 121 Capture Groups Lecture 122 Matching Specific Numbers of Characters Lecture 123 Character Classes Lecture 124 A Solution to the Email Address-Matching Exercise Lecture 125 Using "Not" in Character Classes Lecture 126 Escaping Regexes Lecture 127 Comments and Space in Regular Expressions Lecture 128 Referring to Capture Groups in Regexes Lecture 129 Capture Groups and Non-Capture Groups Lecture 130 Matching Newlines Lecture 131 Matching Ends of Lines Lecture 132 The "Search" Function Lecture 133 The "Findall" Function Lecture 134 Matching Starts of Lines Lecture 135 Splitting Strings Lecture 136 Replacing Text Lecture 137 Alternatives in Regexes Lecture 138 A "Budget" Exercise Lecture 139 The First Part of a Solution to the Budget Exercise Lecture 140 The Second Part of the Solution to the Budget Exercise Lecture 141 Ignoring Case in Regular Expressions Lecture 142 Compiling Regular Expressions Lecture 143 Zero-Width Lookahead Assertions Lecture 144 Some More Useful Regex Sequences Lecture 145 Summary of Regular Expressions Section 7: Handling Errors Lecture 146 Tracebacks Lecture 147 Try-Except Lecture 148 Catching Specific Errors Lecture 149 Error Messages Lecture 150 Raising Errors Lecture 151 The KeyboardInterrupt Error Lecture 152 The Finally Clause Lecture 153 An Exercise with Errors Lecture 154 A Solution to the Errors Exercise Lecture 155 An Exercise on Calculating Pi Lecture 156 A Solution to the Pi Exercise Lecture 157 Using Assertions Section 8: Object-Oriented Programming Lecture 158 Classes Lecture 159 Constructors Lecture 160 The Mysterious 'Self' Variable Lecture 161 Object Properties Lecture 162 Creating String Representations of Objects Lecture 163 Encapsulation Lecture 164 An Object-Oriented Word Game Lecture 165 Choosing Words Lecture 166 Guessing Letters Lecture 167 Displaying Letters Lecture 168 Completing the Word Game Lecture 169 Getters and Setters Lecture 170 Inheritance Lecture 171 Overriding Methods Lecture 172 Polymorphism Lecture 173 Super Constructors Lecture 174 Class Properties Lecture 175 Automatically Assigning IDs to Objects Lecture 176 Class Methods Lecture 177 Object and Classes Lecture 178 An Exercise in Object Orientation Lecture 179 First Part of a Solution to the Object Orientation Exercise Lecture 180 Second Part of the Solution to the Object Orientation Exercise Lecture 181 Third Part of the Solution to the Object Orientation Exercise Lecture 182 Class Hierarchies Lecture 183 Multiple Inheritance Lecture 184 The Diamond Problem Lecture 185 Mixins Lecture 186 The Property Class Section 9: Conway's Game of Life Lecture 187 Introducing Conway's Game of Life Lecture 188 A Basic GUI App Lecture 189 Using Frames Lecture 190 Refactoring Into an "OO" Structure Lecture 191 Laying Out Widgets with Grids Lecture 192 A Canvas Class Lecture 193 Getting Widget Sizes Lecture 194 Drawing Cells Lecture 195 A Cell Class Lecture 196 Toggling Cell States Lecture 197 Handling Button Clicks Lecture 198 Selecting Neighbouring Cells Lecture 199 Wrapping Cell Selection Lecture 200 The Game of Life Rules Lecture 201 Implementing the Game of Life Rules Lecture 202 Clearing the Grid Lecture 203 Randomising Cell Selection Section 10: Modules: Packaging Code Lecture 204 A Basic Module Lecture 205 Conditionally Running 'Main' Lecture 206 Importing Parts of Modules Lecture 207 Packages Lecture 208 A Games Package Lecture 209 Using Functions in Dictionaries Lecture 210 A Solution to the Games Menu Exercise Lecture 211 Package Initialisation Lecture 212 How Python Locates Modules Lecture 213 Inspecting Modules Lecture 214 Subpackages Lecture 215 Package Attributes Lecture 216 Referencing Parallel Modules Lecture 217 Installing Modules Section 11: Operators Lecture 218 A Clock Class Exercise Lecture 219 A Solution to the Clock Exercise Lecture 220 Implementing 'Add' Lecture 221 Implementing Unary Operators Lecture 222 Flags Lecture 223 Bitwise 'Or' Lecture 224 Bitwise Flags Lecture 225 Bitwise 'And' Lecture 226 A Flags Exercise Lecture 227 A Solution to the Flags Exercise Lecture 228 Bitwise 'xor' and 'not' Lecture 229 Bit Shift Operators Lecture 230 Hexadecimal Numbers Lecture 231 A Solution to the Hexadecimal Colours Exercise Section 12: Functional Programming Lecture 232 Introducing Functional Programming Lecture 233 Recursion Lecture 234 Passing Functions to Functions Lecture 235 Iterators Lecture 236 Powers of Two Iterator Lecture 237 Mapping Lecture 238 Lambda Functions Lecture 239 Defining Functions in Loops Lecture 240 Lambda Exercise Solution Lecture 241 Sorting Lecture 242 "Next" and "Iter" Lecture 243 Generating Characters Lecture 244 Generators Lecture 245 An Exercise with Generators Lecture 246 Generators Exercise Solution Lecture 247 General Generators Syntax Lecture 248 Generators as Loops Lecture 249 Game of Life Exercise Solution Lecture 250 The Itertools Module Lecture 251 Function Generators Lecture 252 Powers of Two Generator Solution Lecture 253 Filtering Lecture 254 Reducing Lecture 255 A Functional Word Exercise Lecture 256 Solution to the Word Exercise Lecture 257 A Functional Parsing Exercise Lecture 258 Solution to the Functional Parsing Exercise Section 13: Reading and Writing Files Lecture 259 The Mall Customers Database Lecture 260 Reading Files Lecture 261 Ensuring Files Are Closed Lecture 262 Examining "With" Lecture 263 Iterating Over Files Lecture 264 Writing Files Lecture 265 Files Exercise Solution Lecture 266 Appending to Files Lecture 267 Handling Binary Text Data Lecture 268 Binary Files Lecture 269 Serialization Lecture 270 Serializing Integers Lecture 271 Deserializing Integers Lecture 272 Saving and Loading Integers Lecture 273 Numbers Versus Bytes Lecture 274 Python Arrays Lecture 275 Saving Arrays Lecture 276 Pickling Lecture 277 JSON Lecture 278 File Dialogs Lecture 279 Game of Life Menus Lecture 280 Game of Life Save and Load Lecture 281 Testing the Game of Life Updates Lecture 282 The OS Module Lecture 283 A Word Count Exercise Lecture 284 Splitting Text Into Words Lecture 285 Counting Words Section 14: Numpy: Numerical Python Lecture 286 Numpy Arrays Lecture 287 Creating Numpy Arrays Lecture 288 Numpy Arithmetic Lecture 289 Numpy Slicing Lecture 290 2D Indexing Lecture 291 Numpy Views Lecture 292 Advanced Indexing Lecture 293 Matrices Lecture 294 Matrix Multiplication Lecture 295 Numpy Functions Lecture 296 An Exercise with Numpy Lecture 297 Numpy Exercise Solution First Part Lecture 298 Numpy Exercise Solution Second Part Lecture 299 Tiling Lecture 300 Masks Lecture 301 Combining Boolean Arrays Lecture 302 Filtering Numpy Arrays Lecture 303 Variance and Standard Deviation Lecture 304 Variance Exercise Lecture 305 Bessel's Correction Lecture 306 Scaling and Variance Lecture 307 Loading CSV in Numpy Section 15: Graphs and Plotting Lecture 308 Pyplot Basics Lecture 309 Styles Lecture 310 Configuring Matplotlib Lecture 311 More Config Options Lecture 312 A Word Length Exercise Lecture 313 Word Length Plot Solution First Part Lecture 314 Word Length Plot Solution Second Part Lecture 315 Creating Bar Charts Lecture 316 Creating Pie Charts Lecture 317 Pie Chart Exercise Solution Lecture 318 Scatter Plots Lecture 319 Histograms Lecture 320 Multiple Graphs in One Plot Lecture 321 Subplots Lecture 322 Subplots Exercise Solution Lecture 323 3D Plots Section 16: Pandas: Python's Equivalent of Spreadsheets Lecture 324 Introduction Lecture 325 Referencing Cells Lecture 326 Loc and Iloc Lecture 327 Changing Values in Pandas Lecture 328 Pandas Functions Lecture 329 Pandas Series Lecture 330 Matplot and Pandas Lecture 331 Sorting in Pandas Lecture 332 Correlations Lecture 333 Grouping Lecture 334 Grouped Types Lecture 335 Group Aggregate Functions Lecture 336 Filtering Lecture 337 Multiple Groups Lecture 338 Plotting Groups Lecture 339 Binning Lecture 340 A Groupby Exercise Lecture 341 Groupby Exercise Solution First Part Lecture 342 Groupby Exercise Solution Second Part Lecture 343 Zipf's Law Exercise Lecture 344 Zipf's Law Exercise Solution Section 17: Regression: Fitting and Predicting Curves Lecture 345 Introduction to Regression Lecture 346 Linear Regression Data Lecture 347 Configuring Tick Labels Lecture 348 The Equation of a Line Lecture 349 Linear Regression with Statsmodels Lecture 350 Why Add Constants Lecture 351 R Squared Lecture 352 Calculating R Squared Lecture 353 Train-Test Split Lecture 354 Predictions with Linear Regression Lecture 355 Linear Regression Exercise Lecture 356 Plotting Grapes Exercise Solution Lecture 357 Predicting the Weights of Grapes Lecture 358 Removing Outliers Lecture 359 Multiple Linear Regression Lecture 360 A Multiple Linear Regression Model with Scikit-Learn Lecture 361 About Polynomial Regression Lecture 362 Polynomial Features Lecture 363 A Polynomial Regression Model Lecture 364 A Surprising Result Lecture 365 Binomial Logistic Regression and Causation Lecture 366 Categorical Dummy Values Lecture 367 The Logistic Equation Lecture 368 A Scikit-Learn Logistic Regression Model Lecture 369 Multiple Logistic Regression Lecture 370 Getting Predictions with Logistic Regression Lecture 371 Confusion Matrices Lecture 372 Scaling and Normalisation Lecture 373 Normalising Split Data Lecture 374 Using StandardScaler Lecture 375 A Confusion Matrix Exercise Lecture 376 Confusion Matrix Exercise Solution, First Part Lecture 377 Confusion Matrix Exercise Solution, Second Part Section 18: Clustering: Analysing Clustered Data Lecture 378 Introducing Clustering Lecture 379 K-Means Clustering Lecture 380 Centroids and Inertia Lecture 381 The Elbow Method Lecture 382 K-Means Exercise Solution Lecture 383 Exercise Further Analysis Lecture 384 The Iris Flower Dataset Lecture 385 Loading the Iris Flower Dataset Lecture 386 Seaborn Plots Lecture 387 K-Means Iris Exercise Lecture 388 Iris Exercise Solution Lecture 389 Permutations Exercise Lecture 390 Permutations Exercise Solution Lecture 391 Normalized Mutual Information Lecture 392 Dendrograms Lecture 393 The Linkage Table Lecture 394 Clustering Iris Flower Data Lecture 395 Scikit-Learn Agglomerative Clustering Lecture 396 Linkage and Affinity Lecture 397 Fit, Predict, Transform Lecture 398 Nearest Neighbors Lecture 399 Spherically Symmmetric Data Lecture 400 DBSCAN Lecture 401 Determining Epsilon Lecture 402 Using DBSCAN Lecture 403 DBSCAN Moons Exercise Lecture 404 DBSCAN Moons Exercise Solution Lecture 405 Silhouette Scores Lecture 406 Nearest Neighbors Classification Lecture 407 Using KNeighborsClassifier Section 19: Naive Bayes: Making Predictions on the Basis of Probabilities Lecture 408 Bayes' Theorem Lecture 409 Naive Bayes Lecture 410 Applying Bayes to Classification Lecture 411 An Email Dataset Lecture 412 Loading the Email Dataset Lecture 413 Counting Words in Emails Lecture 414 Listing Common Words Lecture 415 The Predictor Matrix Lecture 416 Naive Bayes Classifiers Lecture 417 Naive Bayes Exercise Lecture 418 Naive Bayes Exercise Solution Lecture 419 Classifying Irises with Naive Bayes Section 20: Decision Trees Lecture 420 Introducing Decision Trees Lecture 421 Gini Impurity Lecture 422 Calculating Gini Impurity Lecture 423 Gini Impurity Examples Lecture 424 Decision Tree Exercise Lecture 425 A Solution to the Decision Tree Exercise Lecture 426 Seaborn Iris Plots Lecture 427 Plotting Decision Trees Section 21: Principal Component Analysis Lecture 428 Introducing PCA Lecture 429 Data for PCA Lecture 430 How PCA Works Lecture 431 Transforming Data with PCA Lecture 432 Explained Variance Ratios Lecture 433 Iris Flower PCA Analysis Lecture 434 PCA Components Lecture 435 Classifying Irises with PCA Lecture 436 PCA Tips Lecture 437 PCA Exercise Lecture 438 A Solution to the PCA Exercise Lecture 439 The MNIST Dataset Lecture 440 Fetching MNIST From OpenML Lecture 441 Loading MNIST with Keras Lecture 442 Character Recognition Lecture 443 Configuring Logistic Regression Lecture 444 Displaying Images Section 22: Artificial Neural Networks (ANNs) Lecture 445 An Artificial Neuron Lecture 446 Activation Functions Lecture 447 Minimising Loss Lecture 448 Preparing Iris Data Lecture 449 A Basic ANN Lecture 450 Dropout, and Tweaking the Network Lecture 451 A Neural Net Character Recognition Exercise Lecture 452 Preparing the MNIST Data Lecture 453 An ANN for Recognising Digits Lecture 454 Improving the ANN Lecture 455 Comparing Subarrays Lecture 456 Displaying Misclassified Images Lecture 457 Saving and Loading ANNs Lecture 458 Machine Learning Pipelines Lecture 459 A Standalone Pretrained Classifier Lecture 460 The California Housing Dataset Lecture 461 Regression with Neural Networks Lecture 462 Improving ANN Regression Lecture 463 Analysing the Results Lecture 464 Detecting Overfitting Section 23: Conclusion Lecture 465 Conclusion Complete beginners with computer programming,Existing programmers who want to improve their Python knowledge or learn Python,Python programmers who want to learn how to use AI/ML in their programs. ![]() |