Themabewertung:
  • 0 Bewertung(en) - 0 im Durchschnitt
  • 1
  • 2
  • 3
  • 4
  • 5
Australian Intermediate Maths Olympiad
#1
[Bild: fz1svhtdgnflcogcrmhubp2ffs.jpg]

Australian Intermediate Maths Olympiad
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz
Language: English | Size: 9.83 GB | Duration: 7h 38m

Stepping stone to the IMO


What you'll learn
Mathematics
Number theory (Arithmetic and modular arithmetic)
Geometry (Triangles and circles)
Proofs (Direct, induction, contraposition, contradiction)
Algebra
Problem solving with application to all previous AIMO problems
AIMO 2013-2019 papers
Requirements
Concentrate for 2 hours
Determined to succeed

Description
First longer time limit competition for students in Australia to display their maths skills over 4 hours. We use this as a concrete way to teach students long term maths skills rather than just focus completely on the test. It will be a great way to improve one's concentration length, logical reasoning and overall problem solving skills. Come join us unravel the beauty of mathematics.
Overview
Section 1: Introduction
Lecture 1 Introduction 2020
Lecture 2 Planning
Lecture 3 2019 Notes
Lecture 4 2018 notes
Section 2: 2020 Geometry
Lecture 5 Overview of topics
Lecture 6 Circumcircles
Lecture 7 Cyclic quads
Lecture 8 Bowtie Theorem
Lecture 9 Incircles
Lecture 10 Relationship between Circumcircles and Incircles
Section 3: Proofs
Lecture 11 Intro to proofs
Section 4: Modular arithmetic (Number theory I)
Lecture 12 2020 Summary of bases&mods
Lecture 13 Bases other than 10
Lecture 14 Division algorithm and modular arithmetic
Lecture 15 Divisibility rules 2 to 11 not 7
Lecture 16 Divisibility rule for 7
Lecture 17 Exercises
Lecture 18 AIMO 2002 question 1
Lecture 19 AIMO 1999 question 8
Lecture 20 AIMO 1999 question 10
Section 5: Algebra
Lecture 21 Notes
Lecture 22 Addition Exercise 3
Lecture 23 Algebra basics
Section 6: Triangles and circles (Geometry)
Lecture 24 Congruent triangles
Lecture 25 Circumcircles
Lecture 26 Incircles
Lecture 27 Cyclic quadrilaterals
Lecture 28 Two angles standing on the same arc are equal
Lecture 29 Exercises
Lecture 30 Example error
Lecture 31 AIME Problem 13 diagram
Section 7: Extension of triangles: Trigonometry
Lecture 32 Role of trigonometry
Lecture 33 2002 Q10 with trig
Section 8: Fundamental theorem of arithmetic
Lecture 34 ax+by=gcd(a,b)
Lecture 35 p|ab implies p|a or p|b
Lecture 36 Unique product of primes
Lecture 37 Fundamental Theorem of Arithmetic
Section 9: Number Theory test
Lecture 38 Test paper
Section 10: Algebra Test
Lecture 39 Test paper
Lecture 40 Algebra review
Lecture 41 Q2 (2000 AIMO Q2)
Lecture 42 Q3 (2003 AIMO Q3)
Lecture 43 Q4 (1999 AIMO Q4)
Lecture 44 Q7 continued
Section 11: Geometry Test
Lecture 45 Geometry test 1 questions
Lecture 46 Q4
Lecture 47 Test question 9 (AIMO1999Q9)
Lecture 48 AIMO 2011 Q8, 9, 10
Lecture 49 Monday Senior Contest questions
Section 12: August meetings
Lecture 50 2012 AIMO Q5, 2008 AIMO Q4
Lecture 51 Night before senior contest
Lecture 52 2012 AIMO Q7,8, 2006 Q9, 2000 Q9,10, 2001 Q6
Lecture 53 Fundamental Theorem of arithmetic. '02 Q6, '07 Q5
Lecture 54 AIMO 2004 Q6, 2006 Q10, 2009 Q10, 2011 Q2 ax+by=d
Lecture 55 AIMO 2009 Q9, 2010 Q10 & investigation
Section 13: September
Lecture 56 AIMO 2008 Q9
Lecture 57 2008 Q10 investigation
Lecture 58 AIMO2018 Q6-10 investigation, 2009 Investigation
Lecture 59 AIMO 2003 Q9,10, 2007 Q9, 2005Q10
Lecture 60 AIMO2016 Q8,9,10, 207Q9, 2007Q10
Section 14: 2013 AIMO paper
Lecture 61 Paper
Lecture 62 Q1-10 plus Investigation (playlist)
Section 15: 2014
Lecture 63 Paper
Lecture 64 Q1, Q3, Q5, Q7, Q8 (video) Q1,3,8,9,10 (see notes)
Section 16: 2015
Lecture 65 Paper
Lecture 66 Q10 (video) Q1,5,10 (see notes)
Section 17: 2016
Lecture 67 Paper
Lecture 68 Q5, Q6, Q7, Q9 (link) Q8,9,10 (See September 9 video)
Section 18: 2017
Lecture 69 Paper
Lecture 70 Q3,5,6,10 (see 2018 notes) 4,7,8 (2019 notes) 9 (September 9 lecture)
Section 19: 2018AIMO
Lecture 71 Paper
Lecture 72 Q3
Lecture 73 Q6-10 plus investigation (September 2 lecture)
Section 20: 2019 AIMO
Lecture 74 Questions
Section 21: Where to from here?
Lecture 75 Just getting started
Lecture 76 Mastering the AIMO course
Lecture 77 AIME problems
Students keen to improve their maths wanting to go to the IMO,Students qualified for the AIMO through school or AMC


[Bild: australianintermediatcpffu.jpg]

Download from RapidGator

Download from Rapidgator:

Download from Keep2Share
Zitieren


Gehe zu:


Benutzer, die gerade dieses Thema anschauen: 1 Gast/Gäste